It is now generally accepted that CD44 is a cell adhesion receptor and that hyaluronan is one of its ligands. Like many cell adhesion receptors, CD44 is broadly distributed, and its ligand, hyaluronan, is a common component of extracellular matrices and extracellular fluids. Yet a great variety of responses has been reported to result from CD44 ligation. These include cell adhesion, cell migration, induction (or at least support) of hematopoietic differentiation, effects on other cell adhesion mechanisms, and interaction with cell activation signals. This diversity of responses indicates that downstream events following ligand binding by CD44 may vary depending on the cell type expressing CD44 and on the environment of that cell. CD44 is expressed on cells in the early stages of hematopoiesis and has been shown to participate in at least some aspects of the hematopoietic process. In mature lymphocytes, CD44 is upregulated in response to antigenic stimuli and may participate in the effector stage of immunological responses. Along with other adhesion receptors that show alterations in expression after activation, CD44 probably contributes to differences in the recirculation patterns of different lymphocyte subpopulations. CD44 ligand-binding function on lymphocytes is strictly regulated, such that most CD44-expressing cells do not constitutively bind ligand. Ligand-binding function may be activated as a result of differentiation, inside-out signaling, and/or extracellular stimuli. This regulation, which in some situations can be rapid and transient, potentially provides exquisite specificity to what would otherwise be a common interaction. CD44 is not a single molecule, but a diverse family of molecules generated by alternate splicing of multiple exons of a single gene and by different posttranslational modifications in different cell types. It is not yet clear how these modifications influence ligand-binding function. The significance of the multiple isoforms of CD44 is not understood, but association of some isoforms with malignancies has been observed. And in at least some experimental systems, a contribution of CD44 isoforms to metastatic behavior has been demonstrated.