Characterization of the functional role of a flexible loop in the alpha-subunit of tryptophan synthase from Salmonella typhimurium by rapid-scanning, stopped-flow spectroscopy and site-directed mutagenesis

Biochemistry. 1993 Oct 5;32(39):10404-13. doi: 10.1021/bi00090a016.

Abstract

The function of a flexible loop (loop 6) in the alpha-subunit from the tryptophan synthase alpha 2 beta 2 bienzyme complex has been investigated utilizing rapid-scanning (RSSF) and single-wavelength (SWSF) stopped-flow spectroscopies. Loop 6 is an extended sequence of residues which connects beta-strand 6 with alpha-helix 6 in the beta/alpha-barrel fold of the alpha-subunit. Substitution of Leu for Arg179 near the base of loop 6 does not significantly affect either the association of the alpha- and beta-subunits to form the bienzyme complex or the kinetics of the reaction of indole with L-serine (L-Ser) to form L-tryptophan (L-Trp), the process catalyzed by the wild-type beta-subunit [Kawasaki, H., Bauerle, R., Zon, G., Ahmed, S., & Miles, E. W. (1987) J. Biol. Chem. 262, 10678-10683]. However, the alpha-subunit-specific ligand glycerol phosphate (GP), which is an inhibitor of the wild-type beta-reaction, is a much less effective inhibitor of the alpha R179L-catalyzed beta-reaction. Equilibrium titration studies show that the affinity of GP for the alpha-site when either L-Ser or glycine is bound at the beta-site has been reduced by nearly 100- and 200-fold, respectively. SWSF analysis of the reaction of IGP and L-Ser to form L-Trp catalyzed by the bienzyme complex revealed a 15-fold reduction in the binding affinity of the alpha-site substrate 3-indole-D-glycerol 3'-phosphate (IGP) in the reaction catalyzed by the alpha R179L mutant as compared to the wild-type enzyme. These studies show that loop 6 is important both for ligand binding to the alpha-site and for the ligand-induced conformational transition of the alpha-subunit from an "open" to a "closed" structure. Modeling studies, based on extensive structural homology of the alpha-subunit with the glycolytic enzyme triosephosphate isomerase (TIM), predict that closure of loop 6 induced by ligand binding at the alpha-active site would effectively sequester the bound substrate from the solvent and trap indole, produced from the cleavage of IGP, within the confines of the bienzyme complex. This conformational transition would promote the diffusion of indole to the beta-active site via the interconnecting tunnel and would help ensure the close coordination of alpha- and beta-subunit catalytic activities.

MeSH terms

  • Benzimidazoles / metabolism
  • Benzimidazoles / pharmacology
  • Binding Sites
  • Kinetics
  • Models, Molecular
  • Mutagenesis, Site-Directed*
  • Protein Conformation
  • Protein Structure, Secondary
  • Salmonella typhimurium / enzymology*
  • Spectrophotometry*
  • Structure-Activity Relationship
  • Triose-Phosphate Isomerase / chemistry
  • Tryptophan Synthase / chemistry*
  • Tryptophan Synthase / genetics
  • Tryptophan Synthase / metabolism*

Substances

  • Benzimidazoles
  • benzimidazole
  • Tryptophan Synthase
  • Triose-Phosphate Isomerase