Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae

J Neurobiol. 1993 Aug;24(8):1008-24. doi: 10.1002/neu.480240803.


The innervation of ventral longitudinal abdominal muscles (muscles 6, 7, 12, and 13) of third-instar Drosophila larvae was investigated with Nomarski, confocal, and electron microscopy to define the ultrastructural features of synapse-bearing terminals. As shown by previous workers, muscles 6 and 7 receive in most abdominal segments "Type I" endings, which are restricted in distribution and possess relatively prominent periodic terminal enlargements ("boutons"); whereas muscles 12 and 13 have in addition "Type II" terminals, which are more widely distributed and have smaller "boutons". Serial sectioning of the Type I innervation of muscles 6 and 7 showed that two axons with distinctive endings contribute to it. One axon (termed Axon 1) has somewhat larger boutons, containing numerous synapses and presynaptic dense bodies (putative active zones for transmitter release). This axon also has more numerous intraterminal mitochondria, and a profuse subsynaptic reticulum around or under the synaptic boutons. The second axon (Axon 2) provides somewhat smaller boutons, with fewer synapses and dense bodies per bouton, fewer intraterminal mitochondria, and less-developed subsynaptic reticulum. Both axons contain clear synaptic vesicles, with occasional large dense vesicles. Approximately 800 synapses are provided by Axon 1 to muscles 6 and 7, and approximately 250 synapses are provided by Axon 2. In muscles 12 and 13, endings with predominantly clear synaptic vesicles, generally similar to the Type I endings of muscles 6 and 7, were found, along with another type of ending containing predominantly dense-cored vesicles, with small clusters of clear synaptic vesicles. This second type of ending was found most frequently in muscle 12, and probably corresponds to a subset of the "Type II" endings seen in the light microscope. Type I endings are thought to generate the 'fast' and 'slow' junctional potentials seen in electrophysiological recordings, whereas the physiological actions of Type II endings are presently not known.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Abdomen / innervation
  • Animals
  • Drosophila melanogaster / anatomy & histology*
  • Image Processing, Computer-Assisted
  • Larva
  • Microscopy, Electron
  • Microscopy, Fluorescence
  • Muscles / innervation*
  • Nerve Endings / ultrastructure*
  • Synapses / ultrastructure*