Antiviral agents: characteristic activity spectrum depending on the molecular target with which they interact

Adv Virus Res. 1993;42:1-55. doi: 10.1016/s0065-3527(08)60082-2.


The target protein (enzyme) with which antiviral agents interact determines their antiviral activity spectrum. Based on their activity spectrum, antiviral compounds could be divided into the following classes: (1) sulfated polysaccharides (i.e., dextran sulfate), which interact with the viral envelope glycoproteins and are inhibitory to a broad variety of enveloped viruses (i.e., retro-, herpes-, rhabdo-, and arenaviruses): (2) SAH hydrolase inhibitors (i.e., neplanocin A derivatives), which are particularly effective against poxvirus, (-)RNA viruses (paramyxovirus, rhabdovirus), and (+/-)RNA virus (reovirus); (3) OMP decarboxylase inhibitors (i.e., pyrazofurin) and CTP synthetase inhibitors (i.e., cyclopentenylcytosine), which are active against a broad range of DNA, (+)RNA, (-)RNA, and (+/-)RNA viruses; (4) IMP dehydrogenase inhibitors (i.e., ribavirin), which are also active against various (+)RNA and (-)RNA viruses and, in particular, ortho- and paramyxoviruses; (5) acyclic guanosine analogs (i.e., ganciclovir) and carbocyclic guanosine analogs (i.e., cyclobut-G), which are particularly active against herpesviruses (i.e., HSV-1, HSV-2, VZV, CMV); (6) thymidine analogs (i.e., BVDU, BVaraU), which are specifically active against HSV-1 and VZV because of their preferential phosphorylation by the virus-encoded thymidine kinase; (7) acyclic nucleoside phosphonates (i.e., HPMPA, HPMPC, PMEA, FPMPA), which, depending on the structure of the acyclic side chain, span an activity spectrum from DNA viruses (papova-, adeno-, herpes-, hepadna-, and poxvirus) to retroviruses (HIV); (8) dideoxynucleoside analogs (i.e., AZT, DDC), which act as chain terminators in the reverse transcriptase reaction and thus block the replication of retroviruses as well as hepadnaviruses; and (9) the TIBO, HEPT, and other TIBO-like compounds, which interact specifically with the reverse transcriptase of HIV-1 and thus block the replication of HIV-1, but not of HIV-2 or any other retrovirus.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Antiviral Agents / classification
  • Antiviral Agents / pharmacology*
  • Carbohydrate Sequence
  • Enzyme Inhibitors / pharmacology*
  • Molecular Sequence Data
  • Structure-Activity Relationship
  • Viruses / drug effects*
  • Viruses / enzymology


  • Antiviral Agents
  • Enzyme Inhibitors