Measurement of uric acid as a marker of oxygen tension in the lung

Arch Biochem Biophys. 1993 Apr;302(1):228-32. doi: 10.1006/abbi.1993.1204.


Changes in O2 tension such as those associated with hypoxic ischemia or hyperoxia may potentially modulate purine nucleotide turnover and production of associated catabolites. We used an isolated perfused rat lung preparation to evaluate the effect of O2 tension on pulmonary uric acid production. Three O2 concentrations (21%, normoxia; 95%, hyperoxia; 0%, hypoxia) were utilized for both pulmonary ventilation and equilibration of recirculating perfusate. All gas mixtures contained 5% CO2 and were balanced with N2. We used Certified Virus Free Sprague-Dawley male rats weighting 250-300 g, four to five rats in each exposure regimen. After a 10-min equilibration period, we measured uric acid levels at 0 and 60 min in lung perfusate and at 60 min in lung tissue. After 60 min of ventilation/perfusion, we observed significant uric acid accumulation in both lung tissue (25-60%) and perfusate (8- to 10-fold) for all three O2 regimens. However, hypoxia produced substantially greater net uric acid concentrations (net = the difference between zero and 60 min) than either normoxia or hyperoxia (1.5-fold in lung tissue, and 2-fold in perfusate, respectively). The data suggest that pulmonary hypoxia results in greater purine catabolism leading to increased uric acid production. Vascular space uric acid, as measured in the recirculating perfusate, was proportional to lung weight changes (r = 0.99) with hypoxia exhibiting the greatest values, possibly reflecting a linkage between tissue perturbation and uric acid release. Thus, measurement of uric acid may serve as a useful marker of adenine nucleotide turnover and lung injury.

MeSH terms

  • Animals
  • Kinetics
  • Lung / anatomy & histology
  • Lung / drug effects*
  • Lung / metabolism
  • Male
  • Organ Size
  • Oxygen / administration & dosage
  • Oxygen / pharmacology*
  • Perfusion
  • Rats
  • Rats, Sprague-Dawley
  • Uric Acid / metabolism*


  • Uric Acid
  • Oxygen