A bispecific monoclonal antibody (bsmAb) has been developed against the human melanoma-associated antigen p97 and an octahedral gallium chelate (Ga-HBED) using the hybrid hybridoma technology. As tetradomas were expected to produce a maximum of ten different molecular species of immunoglobulins, the bispecific antibody was purified from this mixture by consecutive protein A affinity and cation-exchange chromatographic techniques. Although it was established by sodium dodecyl sulphate/polyacrylamide gel electrophoresis that the heavy (H) and light (L) chains of the two parental immunoglobulins were mismatched in the bispecific antibody, results from cell enzyme-linked immunosorbent assay indicated significant dual specific binding to both the melanoma cells and 67Ga-HBED. Other in vitro techniques further confirmed that the bsmAb Bi 5-56-II-17 still retained about 30%-40% simultaneous binding capacity to both the antigens, as would have been expected in a bsmAb that has ideally matched H and L chains. Preliminary in vivo experiments using nude mice bearing the human melanoma xenografts showed that the bsmAb Bi 5-56-II-17 was able to target the radioactive gallium chelate to the tumours twice as efficiently compared to the monospecific, bivalent gallium chelate antibody.