Developmental transitions in the myosin patterns of two fast muscles

J Muscle Res Cell Motil. 1993 Feb;14(1):99-109. doi: 10.1007/BF00132184.

Abstract

Transitions in myosin patterns were examined in situ by immunofluorescence in two fast muscles of the developing chicken, the pectoralis and the posterior latissimus dorsi. Myosin isoforms were localized using stage-specific monoclonal antibodies against the heavy chain of pectoralis myosin. Two antibodies (12C5 and 10H10) recognize adult and late embryonic myosin. They reacted weakly with both the pectoralis and posterior latissimus dorsi at 10 days in ovo, but intensely at 18 days in ovo. Both muscles were completely unreactive with an adult-specific antibody (5C3), indicating that the staining with 12C5 and 10H10 at 18 days in ovo reflects embryonic myosin. Thus two different embryonic isoforms are expressed sequentially in each muscle. Both 12C5 and 10H10 reacted weakly again with these muscles after hatching. The reappearance of a strong positive response to both antibodies, at 28 days in the pectoralis and after 60 days in the posterior latissimus dorsi, correlated well with the first appearance of a response to the adult-specific antibody, 5C3, signalling the beginning of the adult pattern. Both muscles reacted strongly with an antibody (5B4) specific for 'neonatal' myosin between 18 days in ovo and 60 days after hatching. In the pectoralis, embryonic was replaced by neonatal myosin in most fibres by 14 days after hatching; by 28 days, both adult and neonatal myosin were expressed in most fibres; and in the adult, neonatal myosin was replaced entirely by the adult isoform. In contrast, many fibres in the posterior latissimus dorsi still expressed both embryonic and neonatal myosins up to at least 60 days post-hatch, and the remaining fibres expressed the neonatal isoform; the neonatal isoform was present in some fibres even in the adult posterior latissimus dorsi. We have therefore demonstrated in situ four different heavy chain isoforms in two different fast muscles. 'Early embryonic', 'late embryonic', 'neonatal' and eventually 'adult' isoforms are expressed in each muscle and more than one isoform often coexists in the same fibre.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aging
  • Animals
  • Chick Embryo
  • Chickens
  • Gestational Age
  • Immunohistochemistry
  • Muscle Development
  • Muscles / embryology
  • Muscles / enzymology*
  • Myosins / analysis*

Substances

  • Myosins