The growth kinetics of B. subtilis

Antonie Van Leeuwenhoek. 1993 Jan;63(1):45-53. doi: 10.1007/BF00871731.

Abstract

There has been considerable discussion by Kubitschek and Cooper concerning the growth rate of cells of E. coli throughout the cell cycle. Consequently, it is relevant to test Kubitschek's linear model against the exponential model espoused by Cooper (and many others) with another organism and another technique. Burdett et al. measured, by electron microscopy and computer analysis of the microphotographs, the distribution of lengths of a population of cells of Bacillus subtilis grown in 0.4% succinate in a minimal medium. The data were fitted to the extended Collins-Richmond method of Kirkwood & Burdett which subdivided the cell cycle into several phases. I have taken their results and compared them with the linear and exponential growth models for the entire cell cycle after applying correction to the data for the shape of completed and forming poles; i.e., to put the data on a cell-volume basis instead of a cell-length basis. Most of the correction involves no arbitrary assumptions. The conclusion is that global volume growth rate is nearly proportional to cell volume; i.e. growth of Bacillus subtilis is nearly exponential for almost every cell in the growing culture.

MeSH terms

  • Bacillus subtilis / cytology
  • Bacillus subtilis / growth & development*
  • Cell Cycle
  • Kinetics
  • Linear Models
  • Models, Biological*