Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment

J Physiol. 1993 Jan:460:467-85. doi: 10.1113/jphysiol.1993.sp019482.


1. Heat acclimation was induced in eight subjects by asking them to exercise until exhaustion at 60% of maximum oxygen consumption rate (VO2) for 9-12 consecutive days at an ambient temperature of 40 degrees C, with 10% relative humidity (RH). Five control subjects exercised similarly in a cool environment, 20 degrees C, for 90 min for 9-12 days; of these, three were exposed to exercise at 40 degrees C on the first and last day. 2. Acclimation had occurred as seen by the increased average endurance from 48 min to 80 min, the lower rate of rise in the heart rate (HR) and core temperature and the increased sweating. 3. Cardiac output increased significantly from the first to the final heat exposure from 19.6 to 21.4 l min-1; this was possibly due to an increased plasma volume and stroke volume. 4. The mechanism for the increased plasma volume may be an isosmotic volume expansion caused by influx of protein to the vascular compartment, and a sodium retention induced by a significant increase in aldosterone. 5. The exhaustion coincided with, or was elicited when, core temperature reached 39.7 +/- 0.15 degrees C; with progressing acclimation processes it took progressively longer to reach this level. However, at this point we found no reduction in cardiac output, muscle (leg) blood flow, no changes in substrate utilization or availability, and no recognized accumulated 'fatigue' substances. 6. It is concluded that the high core temperature per se, and not circulatory failure, is the critical factor for the exhaustion during exercise in heat stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization / physiology*
  • Body Temperature / physiology
  • Body Temperature Regulation / physiology*
  • Cardiac Output / physiology
  • Cardiovascular Physiological Phenomena*
  • Fatigue / physiopathology*
  • Heart Rate / physiology
  • Hot Temperature*
  • Humans
  • Male
  • Physical Exertion / physiology*
  • Plasma Volume / physiology
  • Stroke Volume / physiology