Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 May 24;323(1-2):113-8.
doi: 10.1016/0014-5793(93)81460-h.

Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of Saccharomyces cerevisiae

Affiliations
Free article

Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of Saccharomyces cerevisiae

P J Belde et al. FEBS Lett. .
Free article

Abstract

Inositol 1,4,5-trisphosphate (IP3) induces a release of Ca2+ from vacuolar membrane vesicles of Saccharomyces cerevisiae. The amount released is dependent on IP3 concentration (concentration for half maximal effect, Km, apparent = 0.4 microM). Myo-inositol, and inositol 1,4-bisphosphate up to 50 microM have no effect on Ca2+ levels in the vesicles. The IP3-induced Ca2+ release is blocked by dantrolene and 8-(N,N-diethylamino)-octyl 3,4,5-trimethoxybenzoate-HCl (TMB-8), which are known to block Ca2+ release from Ca2+ stores in animal cells. IP3-induced release of Ca2+ also occurs when Ca2+ is accumulated by means of an artificial pH gradient, indicating that the effect of IP3 is not due to an effect on the vacuolar H(+)-ATPase. The IP3-induced Ca2+ release is not accompanied by a change in the pH gradient, which indicates that it is not due to a reversal of the Ca2+/nH+ antiport or to a decrease in delta pH by IP3. The present results suggest that IP3 may act as a second messenger in the mobilization of Ca2+ in yeast cells. As in plant cells, the vacuolar membrane of yeast seems to contain a Ca2+ channel, which can be opened by IP3. In this respect the vacuole could function as an IP3-regulated intracellular Ca2+ store, equivalent to the endoplasmic- and sarcoplasmic reticulum in animal cells, and play a role in Ca(2+)-dependent signal transduction in yeast cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources