Aminotransferases: demonstration of homology and division into evolutionary subgroups

Eur J Biochem. 1993 Jun 1;214(2):549-61. doi: 10.1111/j.1432-1033.1993.tb17953.x.


A total of 150 amino acid sequences of vitamin B6-dependent enzymes are known to date, the largest contingent being furnished by the aminotransferases with 51 sequences of 14 different enzymes. All aminotransferase sequences were aligned by using algorithms for sequence comparison, hydropathy patterns and secondary structure predictions. The aminotransferases could be divided into four subgroups on the basis of their mutual structural relatedness. Subgroup I comprises aspartate, alanine, tyrosine, histidinol-phosphate, and phenylalanine aminotransferases; subgroup II acetylornithine, ornithine, omega-amino acid, 4-aminobutyrate and diaminopelargonate aminotransferases; subgroup III D-alanine and branched-chain amino acid aminotransferases, and subgroup IV serine and phosphoserine aminotransferases. (N-1) Profile analysis, a more stringent application of profile analysis [Gribskov, M., McLachlan, A. D. and Eisenberg, D. (1987) Proc. Natl Acad. Sci. USA 84, 4355-4358], established the homology among the enzymes of each subgroup as well as among all subgroups except subgroup III. However, similarity of active-site segments and the hydropathy patterns around invariant residues suggest that subgroup III, though most distantly related, might also be homologous with the other aminotransferases. On the basis of the comprehensive alignment, a new numbering of amino acid residues applicable to aminotransferases (AT) in general is proposed. In the multiply aligned sequences, only four out of a total of about 400 amino acid residues proved invariant in all 51 sequences, i.e. Gly(314AT)197, Asp/Glu(340AT)222, Lys(385AT)258 and Arg(562AT)386, the number not in parentheses corresponding to the structure of porcine cytosolic aspartate aminotransferase. Apparently, the aminotransferases constitute a group of homologous proteins which diverged into subgroups and, with some exceptions, into substrate-specific individual enzymes already in the universal ancestor cell.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacteria / enzymology
  • Biological Evolution*
  • Humans
  • Saccharomyces cerevisiae / enzymology
  • Sequence Homology, Amino Acid*
  • Software
  • Sulfolobus / enzymology
  • Transaminases / chemistry*
  • Transaminases / genetics


  • Transaminases