The free energy of transfer of nonpolar solutes from water to lipid bilayers is often dominated by a large negative enthalpy rather than the large positive entropy expected from the hydrophobic effect. This common observation has led to the concept of the "nonclassical" hydrophobic effect and the idea that the "classical" hydrophobic effect may not drive partitioning in many bilayer systems. We show through measurements of the heat capacity changes associated with the partitioning of tryptophan side-chain analogs into lipid bilayers and into bulk cyclohexane that the hydrophobic effect plays a crucial role regardless of the large negative enthalpy. The results emphasize that bulk-phase measurements are inadequate for describing bilayer partitioning. The experimental approach described should be generally useful for analyzing the bilayer interactions of a broad range of biologically important molecules.