Effects of gaze on apparent visual responses of frontal cortex neurons

Exp Brain Res. 1993;93(3):423-34. doi: 10.1007/BF00229358.


Previous reports have argued that single neurons in the ventral premotor cortex of rhesus monkeys (PMv, the ventrolateral part of Brodmann's area 6) typically show spatial response fields that are independent of gaze angle. We reinvestigated this issue for PMv and also explored the adjacent prearcuate cortex (PAv, areas 12 and 45). Two rhesus monkeys were operantly conditioned to press a switch and maintain fixation on a small visual stimulus (0.2 degree x 0.2 degree) while a second visual stimulus (1 degree x 1 degree or 2 degrees x 2 degrees) appeared at one of several possible locations on a video screen. When the second stimulus dimmed, after an unpredictable period of 0.4-1.2 s, the monkey had to quickly release the switch to receive liquid reinforcement. By presenting stimuli at fixed screen locations and varying the location of the fixation point, we could determine whether single neurons encode stimulus location in "absolute space" or any other coordinate system independent of gaze. For the vast majority of neurons in both PMv (90%) and PAv (94%), the apparent response to a stimulus at a given screen location varied significantly and dramatically with gaze angle. Thus, we found little evidence for gaze-independent activity in either PMv or PAv neurons. The present result in frontal cortex resembles that in posterior parietal cortex, where both retinal image location and eye position affect responsiveness to visual stimuli.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cerebral Cortex / cytology
  • Cerebral Cortex / physiology*
  • Electromyography
  • Frontal Lobe / cytology
  • Frontal Lobe / physiology*
  • Macaca mulatta
  • Male
  • Microelectrodes
  • Neurons / physiology*
  • Photic Stimulation
  • Vision, Ocular / physiology*