Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells

EMBO J. 1995 Nov 15;14(22):5467-75. doi: 10.1002/j.1460-2075.1995.tb00233.x.

Abstract

Direct monitoring of the free Ca2+ concentration in the lumen of the endoplasmic reticulum (ER) is an important but still unsolved experimental problem. We have shown that a Ca(2+)-sensitive photoprotein, aequorin, can be addressed to defined subcellular compartments by adding the appropriate targeting sequences. By engineering a new aequorin chimera with reduced Ca2+ affinity, retained in the ER lumen via interaction of its N-terminus with the endogenous resident protein BiP, we show here that, after emptying the ER, Ca2+ is rapidly re-accumulated up to concentrations of > 100 microM, thus consuming most of the reporter photoprotein. An estimate of the steady-state Ca2+ concentration was obtained using Sr2+, a well-known Ca2+ surrogate which elicits a significantly slower rate of aequorin consumption. Under conditions in which the rate and extent of Sr2+ accumulation in the ER closely mimick those of Ca2+, the steady-state mean lumenal Sr2+ concentration ([Sr2+]er) was approximately 2 mM. Receptor stimulation causes, in a few seconds, a 3-fold decrease of the [Sr2+]er, whereas specific inhibition of the ER Ca2+ ATPase leads to an approximately 10-fold drop in a few minutes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aequorin / chemistry
  • Aequorin / genetics
  • Aequorin / metabolism
  • Animals
  • Base Sequence
  • Calcium / metabolism*
  • Cations, Divalent
  • DNA Primers
  • Endoplasmic Reticulum / drug effects
  • Endoplasmic Reticulum / metabolism*
  • HeLa Cells
  • Humans
  • Luminescent Proteins / chemistry
  • Luminescent Proteins / genetics
  • Luminescent Proteins / metabolism
  • Molecular Sequence Data
  • Recombinant Fusion Proteins / metabolism
  • Sarcoplasmic Reticulum / enzymology
  • Tumor Cells, Cultured

Substances

  • Cations, Divalent
  • DNA Primers
  • Luminescent Proteins
  • Recombinant Fusion Proteins
  • Aequorin
  • Calcium