Inducible, high-level production of infectious murine leukemia retroviral vector particles pseudotyped with vesicular stomatitis virus G envelope protein

Hum Gene Ther. 1995 Sep;6(9):1203-13. doi: 10.1089/hum.1995.6.9-1203.


Murine leukemia viruses (MuLV) have been adapted for use as gene transfer vectors for experimental and human gene therapy applications. Their utility for these purposes has been circumscribed by the limited host range and relatively low titer of available producer clones. Pseudotyping of MuLV particles with the vesicular stomatitis virus envelope protein (VSV-G), expressed transiently in cells producing MuLV Gag and Pol proteins, has yielded vector preparations with a broader host range that can be concentrated by ultracentrifugation. We have explored the use of steroid-inducible and tetracycline-modulated promoter systems (necessary because the VSV-G protein is toxic to cells when constitutively expressed) to derive stable producer cell lines capable of substantial production of VSV-G pseudotyped MuLV particles. A packaging cell line and producer clones capable of expressing a chimeric transcription factor, composed of the tetracycline repressor (tetR) and the VP16 trans-activating sequences of herpes simplex virus VP16 gene and containing the VSV-G coding sequences linked to a minimal promoter having seven tandem copies of the tetracycline responsive operator (tetO), exhibited high levels of VSV-G protein expression when cultured in the absence of tetracycline. Vector particles, produced at titers of 10(5)-10(6) infectious colony forming units per ml (cfu/ml), could be concentrated effectively by ultracentrifugation yielding vector preparations having a titer of 10(9) cfu/ml. These cell lines grew normally when VSV-G protein expression was repressed by tetracycline. Such producer clones hold promise for future human gene therapy applications.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • Culture Media
  • Genetic Vectors / biosynthesis*
  • Genetic Vectors / genetics
  • Herpes Simplex Virus Protein Vmw65 / genetics
  • Membrane Glycoproteins*
  • Mice
  • Moloney murine leukemia virus / genetics*
  • Promoter Regions, Genetic
  • Repressor Proteins / genetics
  • Steroids / pharmacology
  • Tetracycline / pharmacology
  • Tetracycline Resistance / genetics
  • Transfection
  • Vesicular stomatitis Indiana virus / chemistry*
  • Viral Envelope Proteins / genetics*


  • Culture Media
  • G protein, vesicular stomatitis virus
  • Herpes Simplex Virus Protein Vmw65
  • Membrane Glycoproteins
  • Repressor Proteins
  • Steroids
  • Viral Envelope Proteins
  • Tetracycline