Analysis of families at risk for insulin-dependent diabetes mellitus reveals that HLA antigens influence progression to clinical disease

Mol Med. 1995 Jul;1(5):576-82.


Background: Individuals at risk for insulin-dependent diabetes mellitus (IDDM), with an affected first-degree relative, can be identified by the presence of islet cell antibodies (ICA). ICA-positive relatives progress at variable rates to IDDM and identification of those at highest risk is a prerequisite for possible preventative treatment. Those who develop IDDM may exhibit less genetic heterogeneity than their ICA-positive or ICA-negative relatives. Specific human leucocyte antigen (HLA) genes predispose to IDDM but could also influence the rate of progression of preclinical disease. Therefore, by comparing HLA antigen frequencies between first-degree relatives, we sought to identify HLA genes that influence progression to IDDM.

Materials and methods: HLA antigen frequencies were compared in 68 IDDM, 53 ICA-positive, and 96 ICA-negative first-degree relatives from 40 Caucasoid families. Predictions were tested in a panel of 270 unrelated IDDM subjects. HLA typing was performed serologically (HLA class I and II) and by sequence-specific oligotyping (11th International Histocompatibility Workshop protocol) (HLA class II). ICA tests were measured by an internationally standardized indirect immunofluorescence assay.

Results: In general, known susceptibility class II HLA antigens increased in frequency and known protective class II HLA antigens decreased in frequency, from ICA-negative to ICA-positive to IDDM relatives. Thus, DR4 and DQ8 increased whereas DR2 and DQ6 decreased; DR3 and DQ2 increased from ICA-negative to ICA-positive relatives, but not further in IDDM relatives. The high-risk DR3, 4 phenotype increased across the three groups; DR4,X was unchanged, and DR3,X and DRX,X both decreased. The HLA class I antigen, A24, occurred more frequently in ICA-positive relatives who developed IDDM and, in 270 unrelated IDDM subjects, was associated with an earlier age at diagnosis of IDDM in those with the lower risk class II phenotypes DR4,4 and DR3,X.

Conclusions: HLA-DR3 and DQ2 predispose to islet autoimmunity, but not development of clinical IDDM in the absence and DR4 and DQ8. DR4 and DQ8 predispose to the development of clinical IDDM in ICA-positive relatives, in combination with DR3-DQ2 and other haplotypes but not when homozygous. HLA-A24 is significantly associated with rapid progression to IDDM in ICA-positive relatives and with an earlier age at clinical diagnosis. Analysis of IDDM families reveals that HLA genes not only predispose to islet autoimmunity but influence progression to clinical disease. The findings have implications for identifying high-risk relatives as candidates for possible preventative therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Age Factors
  • Alleles
  • Child
  • Diabetes Mellitus, Type 1 / genetics
  • Diabetes Mellitus, Type 1 / immunology*
  • Disease Progression
  • Female
  • Genes, MHC Class I*
  • Genes, MHC Class II*
  • HLA Antigens / analysis*
  • HLA Antigens / genetics
  • Histocompatibility Testing
  • Humans
  • Islets of Langerhans / immunology
  • Male
  • Phenotype
  • Risk Factors


  • HLA Antigens