Muller's Ratchet, Epistasis and Mutation Effects

Genetics. 1995 Sep;141(1):431-7.


In this study, computer simulation is used to show that despite synergistic epistasis for fitness, Muller's ratchet can lead to lethal fitness loss in a population of asexuals through the accumulation of deleterious mutations. This result contradicts previous work that indicated that epistasis will halt the ratchet. The present results show that epistasis will not halt the ratchet provided that rather than a single deleterious mutation effect, there is a distribution of deleterious mutation effects with sufficient density near zero. In addition to epistasis and mutation distribution, the ability of Muller's ratchet to lead to the extinction of an asexual population under epistasis for fitness depends strongly on the expected number of offspring that survive to reproductive age. This strong dependence is not present in the nonepistatic model and suggests that interpreting the population growth parameter as fecundity is inadequate. Because a continuous distribution of mutation effects is used in this model, an emphasis is placed on the dynamics of the mutation effect distribution rather than on the dynamics of the number of least mutation loaded individuals. This perspective suggests that current models of gene interaction are too simple to apply directly to long-term prediction for populations undergoing the ratchet.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation*
  • Epistasis, Genetic*
  • Genetics, Population
  • Models, Genetic*
  • Mutation