Heteroduplex DNA formation and homolog pairing in yeast meiotic mutants

Genetics. 1995 Sep;141(1):75-86. doi: 10.1093/genetics/141.1.75.

Abstract

Previous studies of Saccharomyces cerevisiae have identified several meiosis-specific genes whose products are required for wild-type levels of meiotic recombination and for normal synaptonemal complex (SC) formation. Several of these mutants were examined in a physical assay designed to detect heteroduplex DNA (hDNA) intermediates in meiotic recombination. hDNA was not detected in the rec102, mei4 and hop1 mutants; it was observed at reduced levels in red1, mek1 and mer1 strains and at greater than the wild-type level in zip1. These results indicate that the REC102, MEI4, HOP1, RED1, MEK1 and MER1 gene products act before hDNA formation in the meiotic recombination pathway, whereas ZIP1 acts later. The same mutants assayed for hDNA formation were monitored for meiotic chromosome pairing by in situ hybridization of chromosome-specific DNA probes to spread meiotic nuclei. Homolog pairing occurs at wild-type levels in the zip1 and mek1 mutants, but is substantially reduced in mei4, rec102, hop1, red1 and mer1 strains. Even mutants that fail to recombine or to make any SC or SC precursors undergo a significant amount of meiotic chromosome pairing. The in situ hybridization procedure revealed defects in meiotic chromatin condensation in mer1, red1 and hop1 strains.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Chromosomes, Fungal
  • DNA, Fungal*
  • Meiosis / genetics*
  • Mutation
  • Nucleic Acid Heteroduplexes*
  • Saccharomyces cerevisiae / genetics*

Substances

  • DNA, Fungal
  • Nucleic Acid Heteroduplexes