Presynaptic dopamine-glutamate interactions in the nucleus accumbens regulate sensorimotor gating

Psychopharmacology (Berl). 1995 Aug;120(4):433-41. doi: 10.1007/BF02245815.


Prepulse inhibition (PPI) is the normal reduction in startle reflex that occurs when a startling stimulus is preceded by a weak prepulse. PPI is reduced in patients with schizophrenia and in rats after central dopamine (DA) activation. The DA agonist-induced disruption of PPI in rats may thus model some features of impaired sensorimotor gating in schizophrenia. Ascending DAergic and descending glutamatergic fibers converge within the nucleus accumbens (NAC), and interactions at this DA-glutamate interface have been implicated in the pathophysiology of schizophrenia. In this study, we examined the role of NAC DA-glutamate interactions in the regulation of PPI in rats. Intra-NAC infusion of the non-NMDA antagonist, CNQX, attenuated the PPI-disruptive effects of d-amphetamine (AMPH), but CNQX did not affect PPI when injected alone, nor did it reverse the PPI-disruptive effects of the direct D2/D3 agonist quinpirole. Intra-NAC infusion of the non-NMDA agonist AMPA significantly reduced PPI. The PPI-disruptive effects of AMPA were blocked by haloperidol and by 6-hydroxydopamine (6OHDA) lesions of the NAC. These data suggest that the PPI-disruptive effects of AMPH are dependent on tonic non-NMDA receptor activation in the NAC, and that non-NMDA receptor activation in the NAC results in a DA-dependent reduction in PPI. The parsimonious interpretation of these data is that non-NMDA glutamate receptors in the NAC facilitate presynaptic DA function, and that this DA-glutamate interaction is a critical regulatory substrate of sensorimotor gating.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 6-Cyano-7-nitroquinoxaline-2,3-dione / pharmacology
  • Animals
  • Dopamine / metabolism*
  • Dose-Response Relationship, Drug
  • Glutamic Acid / metabolism*
  • Male
  • Nucleus Accumbens / metabolism*
  • Presynaptic Terminals / metabolism*
  • Psychomotor Performance / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • Reflex, Startle / drug effects*
  • Time Factors


  • Glutamic Acid
  • 6-Cyano-7-nitroquinoxaline-2,3-dione
  • Dopamine