Analysis of the growth and transformation suppressor domains of promyelocytic leukemia gene, PML

J Biol Chem. 1996 Jan 5;271(1):130-5. doi: 10.1074/jbc.271.1.130.

Abstract

The promyelocytic leukemia gene (PML) involved in the t(15;17) (q22;q12) translocation in acute promyelocytic leukemia is a growth suppressor. To elucidate the functional domains of PML, several mutants lacking the nuclear localization signal (PMLnls-), the dimerization domain (PMLdim-), the proline-rich domain at the N-terminal (PMLpro-), the proline-rich RING finger motif (PMLpr-), the proline-rich RING finger B-box-1 (PML-prb-), the serine-proline-rich domain at the C-terminal (PMLsp-), and the double mutant (PMLprb-nls-) have been constructed. Immunofluorescence staining of transiently transfected NIH3T3 cells demonstrated that the RING finger motif, dimerization domain, and nuclear localization signal are all required for the formation of PML oncogenic domains (PODs). Immunofluorescence staining of transiently transfected GM637D human fibroblasts indicated that expression of PMLprb-, PM-Lnls-, and PMLprb-nls- led to a significant reduction or, in some cases, complete elimination of PODs. PMLdim-, PMLnls-, PMLpr-, PMLprb-, and PMLprb-nls- mutants were found to lose their ability to suppress transformation of NIH3T3 cells by activated neu, while PMLpro- and PMLsp- mutants did not. These results suggest that the ability of PML to form a POD is essential for suppression of growth and transformation. Furthermore, since PMLprb-, PMLnls-, and PMLprb-nls- mutants could block the suppression effect of wild-type PML on transformation of NIH3T3 cells by the neu oncogene, these PML mutants are potential dominant negative inhibitors of PML. Our study also suggests that the RING finger motif may interact with other nuclear proteins.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3T3 Cells
  • Animals
  • Base Sequence
  • Cell Division / genetics*
  • Cell Transformation, Neoplastic / genetics*
  • DNA Primers
  • Leukemia, Promyelocytic, Acute / genetics*
  • Leukemia, Promyelocytic, Acute / pathology
  • Mice
  • Molecular Sequence Data
  • Mutation
  • Sequence Deletion
  • Suppression, Genetic*

Substances

  • DNA Primers