Changes of synaptic efficacy in the medial geniculate nucleus as a result of auditory classical conditioning

J Neurosci. 1996 Feb 1;16(3):1273-83. doi: 10.1523/JNEUROSCI.16-03-01273.1996.

Abstract

In this study we examined inputs to neurons in the medial subnucleus of the medial geniculate nucleus (mMG) for changes of synaptic efficacy associated with heart-rate conditioning to an auditory conditioned stimulus (CS). Conditioning-related changes of synaptic efficacy were measured in awake animals by examining mMG single-unit responses evoked by stimulation of one of two areas that send auditory CS and nonauditory information monosynaptically to the mMG, the brachium of the inferior colliculus (BlC) and the superior colliculus (SC). Synaptic efficacy was measured before, immediately after, and 1 hr after one session of classical conditioning with a tone CS and a corneal airpuff unconditioned stimulus. To determine whether conditioning produced changes of synaptic efficacy on the auditory BlC inputs to mMG cells and not general changes of cellular excitability, analyses of synaptic efficacy were performed on the mMG units that exhibited short-latency evoked responses (< 3.5 msec) to both BlC and SC stimulation. Analyses revealed that the BlC but not the SC test stimulus-evoked unit activity from the same neurons exhibited the following changes immediately after conditioning: decreases in unit response latency, increases in unit response reliability, and increases in spike frequency. BlC-evoked unit responses after pseudoconditioning did not exhibit these changes in unit responding. These results suggest that the synapses carrying auditory CS information to mMG neurons increase in strength as the result of associative conditioning with an acoustic CS. Some of these changes of synaptic efficacy remained 1 hr after training.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Auditory Pathways / physiology*
  • Conditioning, Classical / physiology*
  • Female
  • Geniculate Bodies / physiology*
  • Heart Rate / physiology
  • Male
  • Neuronal Plasticity
  • Rabbits
  • Synapses / physiology*