Trace metal, acute phase and metabolic response to endotoxin in metallothionein-null mice

Biochem J. 1996 Mar 15;314 ( Pt 3)(Pt 3):793-7. doi: 10.1042/bj3140793.

Abstract

Accumulation of hepatic zinc via metallothionein (MT) induction during infection/inflammation is postulated to benefit a range of metabolic processes. The metabolic consequences of two doses of endotoxin (LPS) (1 and 5 mg/kg, intraperitoneally) were examined in normal (MT+/+) and MT-null (MT-/-) mice (all results means =/- S.E.M., n=6). At 16 h after 1 mg/kg LPS, hypozincaemia was pronounced in the MT+/+ mice (4.4+/-0.2 microM), concomitant with a 36% increase in hepatic Zn and a > 10-fold increase in hepatic MT. Plasma Zn (16.6+/-0.7 microM) and total hepatic Zn were unchanged in MT -/- mice, confirming the importance of MT in altering plasma and hepatic Zn during inflammation. Plasma iron was lower in LPS-treated MT-/- mice, whereas plasma copper increased to a similar extent in both groups of mice. Plasma fibrinogen more than doubled, and was similar in both groups of mice, which questions the importance of MT in acute-phase protein synthesis. Blood and liver glucose concentrations were not significantly different between groups before or after LPS, whereas blood and liver lactate concentrations were significantly lower (31% and 24% respectively) in MT-/- mice after LPS. At 16 h after 5 mg/kg LPS, plasma Zn was decreased even further in MT+/+ mice (2.6+/-0.3 microM), but remained unchanged in MT-/- mice at concentrations significantly above those in 16-h fasted MT-/- mice (15.8+/-0.5 versus 11.3+/-0.3 microM). Total liver Zn was 17% lower than fasting values in MT-/- mice, in contrast with 32% higher in MT+/+ mice. Synthesis of MT (in MT+/+ mice) and fibrinogen in all mice was not further enhanced by the higher LPS dose. Blood glucose was significantly decreased by 18% in MT+/+ mice and by 38% in MT-/- mice after 5 mg/kg LPS. There was a marked 44% decrease in liver glucose in MT-/- mice; that in MT+/+ mice was unchanged from fasting levels, implying a deficit in hepatic gluconeogenesis in LPS-treated MT-/- mice. In the absence of any indication of major hepatotoxicity, the results of this study indicate that energy production, and not acute-phase protein synthesis, may be most influenced by Zn supply during endotoxaemia, suggesting that MT has a role in maintaining hepatic and blood glucose in this metabolic setting.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Glucose / drug effects
  • Blood Glucose / metabolism
  • Crosses, Genetic
  • Dose-Response Relationship, Drug
  • Gluconeogenesis
  • Glucose / metabolism*
  • Lipopolysaccharides / toxicity*
  • Liver / drug effects
  • Liver / metabolism*
  • Liver / pathology
  • Metallothionein / deficiency*
  • Metallothionein / genetics
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred Strains
  • Mice, Knockout
  • Species Specificity
  • Trace Elements / metabolism
  • Zinc / deficiency
  • Zinc / metabolism*

Substances

  • Blood Glucose
  • Lipopolysaccharides
  • Trace Elements
  • Metallothionein
  • Glucose
  • Zinc