A learned odor evokes an enhanced Fos-like glomerular response in the olfactory bulb of young rats

Brain Res. 1995 Nov 20;699(2):192-200. doi: 10.1016/0006-8993(95)00896-x.


Young rats exposed to peppermint odor and reinforcing tactile stimulation from postnatal days (PND) 1-18 increase their preference for that odor relative to controls. This early olfactory memory is accompanied by an 80% increase in the density of glomerular-layer cells displaying Fos-like immunoreactivity in response to the learned odor on PND 19. The difference is observed in midlateral portions of the olfactory bulb that align with foci of 2-deoxyglucose (2-DG) uptake in adjacent sections. Trained and control animals are not different in the Fos-like response of juxtaglomerular cells within ventrolateral 2-DG foci. Ratios of midlateral/ventrolateral response differ significantly between trained and control animals and include differences among cells of three staining intensities. These ratios are correlated with ratios of 2-DG uptake (midlateral/ventrolateral foci), which also differ significantly between trained and control rats. Juxtaglomerular cells associated with 2-DG foci also express Egr-1-like immunoreactivity. However, the midlateral Egr-1 response does not differ between trained and control rats. These results show that early memories can be associated with an increased Fos-like response in a primary sensory area of the CNS. They also suggest that only specific regions within the olfactory bulb are modified following the learning of a given odor in early life.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Cell Count
  • Female
  • Immunohistochemistry
  • Learning
  • Male
  • Odorants*
  • Olfactory Bulb / physiology*
  • Proto-Oncogene Proteins c-fos / biosynthesis*
  • Rats
  • Rats, Wistar


  • Proto-Oncogene Proteins c-fos