We have re-examined single channel EEG data obtained from normal human subjects. In the original analysis, calculation of the correlation dimension with the Grassberger-Procaccia algorithm produced results consistent with and interpretation of low-dimensional behavior. The re-examination suggests that the previous indication of low-dimensional structure was an artifact of autocorrelation in the oversampled signal. Calculations with a variant of the Grassberger-Procaccia algorithm modified to be less sensitive to autocorrelations, and comparison with linear gaussian surrogate data, indicate that these data may be more appropriately modeled by linearly filtered noise. Discriminant analysis further indicates that the correlation dimension is a poor discriminator for distinguishing between EEGs recorded at rest and during periods of cognitive activity. It remains possible that the application of other nonlinear measures or the examination of multichannel EEG data may resolve structures not found in these calculations.