Human peripheral blood monocytes were treated for 4 h with a combination of the beta-agonist salbutamol (3 microM) and the low-Km cAMP-specific phosphodiesterase (PDE4) inhibitor rolipram (30 microM) to produce a prolonged elevation of cAMP and consequent increase in PDE activity. After this treatment, isozyme-selective PDE inhibitors were used to characterize the cAMP PDE profiles of high-speed supernatants before and after DEAE-Sepharose column chromatography. These experiments, in which total soluble PDE activity was increased by 58%, showed that the increased PDE activity is due to up-regulation of PDE4 and that at least two of the four subtypes are up-regulated. Experiments in whole cells demonstrated that this relatively modest increase in PDE4 activity has significant functional consequences, reducing cAMP accumulation in response to both PGE2 and lower, though not maximal, concentrations of rolipram. Further characterization of PDE4 subtype expression in control and treated monocytes, using polymerase chain reaction and Western blotting with subtype-specific peptide antibodies, showed that resting monocytes express both mRNA and protein for PDE4A, PDE4B and PDE4D. The amount of message for PDE4A and PDE4B appeared to increase upon up-regulation, whereas mRNA for PDE4D was not detected in treated cells. Western blots showed increases in the amount of protein for both PDE4A and PDE4B after treatment. We conclude that the PDE4 subtypes are differentially regulated upon prolonged exposure to elevated cAMP, with the consequence that the PDE4 profiles of control and treated cells differ not only in total activity but also in the relative proportions of the subtypes represented.