Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification

J Biol Chem. 1996 Aug 9;271(32):19199-208. doi: 10.1074/jbc.271.32.19199.

Abstract

Detection of 3-nitrotyrosine has served as an in vivo marker for the production of the cytotoxic species peroxynitrite (ONOO-). We show here that reaction of nitrite (NO2-), the autoxidation product of nitric oxide (.NO), with hypochlorous acid (HOCl) forms reactive intermediate species that are also capable of nitrating phenolic substrates such as tyrosine and 4-hydroxyphenylacetic acid, with maximum yields obtained at physiological pH. Monitoring the reaction of NO2- with HOCl by continuous flow photodiode array spectrophotometry indicates the formation of a transient species with spectral characteristics similar to those of nitryl chloride (Cl-NO2). Reaction of synthetic Cl-NO2 with N-acetyl-L-tyrosine results in the formation of 3-chlorotyrosine and 3-nitrotyrosine in ratios that are similar to those obtained by the NO2-/HOCl reaction (4:1). Tyrosine residues in bovine serum albumin are also nitrated and chlorinated by NO2-/HOCl and synthetic Cl-NO2. The reaction of N-acetyl-L-tyrosine with NO2-/HOCl or authentic Cl-NO2 also produces dityrosine, suggesting that free radical intermediates are involved in the reaction mechanism. Our data indicate that while chlorination reactions of Cl-NO2 are mediated by direct electrophilic addition to the aromatic ring, a free radical mechanism appears to be operative in nitrations mediated by NO2-/HOCl or Cl-NO2, probably involving the combination of nitrogen dioxide (.NO2) and tyrosyl radical. We propose that NO2- reacts with HOCl by Cl+ transfer to form both cis- and trans-chlorine nitrite (Cl-ONO) and Cl-NO2 as intermediates that modify tyrosine by either direct reaction or after decomposition to reactive free and solvent-caged Cl. and .NO2 as reactive species. Formation of Cl-NO2 and/or Cl-ONO in vivo may represent previously unrecognized mediators of inflammation-mediated protein modification and tissue injury, and offers an additional mechanism of tyrosine nitration independent of ONOO-.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Hypochlorous Acid / chemistry*
  • Nitric Oxide / chemistry*
  • Nitrites / chemistry*
  • Phenylacetates / chemistry
  • Serum Albumin, Bovine / chemistry
  • Tyrosine / analogs & derivatives
  • Tyrosine / chemistry

Substances

  • Nitrites
  • Phenylacetates
  • Serum Albumin, Bovine
  • Nitric Oxide
  • 4-hydroxyphenylacetic acid
  • Tyrosine
  • Hypochlorous Acid
  • N-acetyltyrosine