Axotomy induces a transient and localized elevation of the free intracellular calcium concentration to the millimolar range

J Neurophysiol. 1995 Dec;74(6):2625-37. doi: 10.1152/jn.1995.74.6.2625.

Abstract

1. Axonal transection triggers a cascade of pathological processes that frequently lead to the degeneration of the injured neuron. It is generally believed that the degenerative process is triggered by an overwhelming influx of calcium through the cut end of the axon. 2. Theoretical considerations and indirect observations suggest that axotomy is followed by an increase in the free intracellular calcium concentration ([Ca2+]i) to the millimolar level. In contrast, only relatively modest and transient elevation in [Ca2+]i to the micromolar level was revealed by recent fura-2 studies. 3. In the current study we used the low-affinity Ca2+ indicator mag-fura-2 to reexamine the spatiotemporal distribution pattern of Ca2+ after axotomy and to map the free intracellular Mg2+ concentration gradients. 4. We report that axotomy elevates [Ca2+]i well beyond the "physiological" range of calcium concentrations, to levels > 1 mM near the tip of the cut axon and to hundreds of micromolars along the axon further away from the cut end. Nevertheless, [Ca2+]i recovers to the control levels within 2-3 min after the resealing of the cut end. 5. A comparison of the behavior of fura-2 and mag-fura-2 in the cytosol of the axotomized neurons reveals that the determination of [Ca2+]i by fura-2 largely underestimates the actual intracellular Ca2+ concentrations. 6. Experiments in which one branch of a bifurcated axon was transected revealed that the elevation in [Ca2+]i is confined to the transected axonal branch and does not spread beyond the bifurcation point. 7. After axotomy, the intracellular Mg2+ concentration equilibrates rapidly with the external concentration and then recovers at a rate somewhat slower than that of [Ca2+]i. 8. To the best of our knowledge, this study is the first direct demonstration that axotomy elevates [Ca2+]i to the millimolar range and that neurons are able to recover from these extreme calcium concentrations.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Aplysia / metabolism*
  • Axons / physiology*
  • Calcium / metabolism*
  • Calibration
  • Cell Membrane / physiology
  • Cytosol / metabolism
  • Electrophysiology
  • Fluorescent Dyes
  • Fura-2 / analogs & derivatives
  • Fura-2 / metabolism
  • Magnesium / metabolism
  • Neurons / metabolism*

Substances

  • Fluorescent Dyes
  • 2-(2-(5-carboxy)oxazole)-5-hydroxy-6-aminobenzofuran-N,N,O-triacetic acid
  • Magnesium
  • Calcium
  • Fura-2