Fungal beta-glucan interacts with vitronectin and stimulates tumor necrosis factor alpha release from macrophages

Infect Immun. 1996 Sep;64(9):3548-54. doi: 10.1128/iai.64.9.3548-3554.1996.

Abstract

beta-Glucans are polymers of D-glucose which represent major structural components of fungal cell walls. It was shown previously that fungi interact with macrophages through beta-glucan receptors, thereby inducing release of tumor necrosis factor alpha (TNF-alpha). Additional studies demonstrated that vitronectin, a host adhesive glycoprotein, binds to fungi and enhances macrophage recognition of these organisms. Since vitronectin contains a carbohydrate-binding region, we postulated that vitronectin binds fungal beta-glucans and subsequently augments macrophage TNF-alpha release in response to this fungal component. To study this, we first determined the release of TNF-alpha from alveolar macrophages stimulated with fungal beta-glucan. Maximal TNF-alpha release occurred with moderate concentrations of beta-glucan (100 to 200 micrograms/ml), whereas higher concentrations of beta-glucan (> or = 500 micrograms/ml) caused apparent suppression of the TNF-alpha activity released. This suppression of TNF-alpha activity by high concentrations of beta-glucan was mediated by the particulate beta-glucan binding soluble TNF-alpha, through the lectin-binding domain of the cytokine, rendering the TNF-alpha less available for measurement. Next, we assessed the interaction of vitronectin with beta-glucan. Binding of 125I-vitronectin to particulate fungal beta-glucan was dose dependent and specifically inhibitable by unlabeled vitronectin. Furthermore, treatment of beta-glucan with vitronectin substantially augmented macrophage TNF-alpha release in response to this fungal component. These findings demonstrate that fungal beta-glucan can directly modulate TNF-alpha release from macrophages. Further, these studies indicate that the host adhesive glycoprotein vitronectin specifically binds beta-glucan and augments macrophage cytokine release in response to this fungal element.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Wall / immunology*
  • Glucans / immunology*
  • Lectins / metabolism
  • Macrophages, Alveolar / metabolism*
  • Rabbits
  • Saccharomyces cerevisiae / immunology
  • Tumor Necrosis Factor-alpha / metabolism*
  • Vitronectin / metabolism*

Substances

  • Glucans
  • Lectins
  • Tumor Necrosis Factor-alpha
  • Vitronectin