Active transport of glucosylglycerol is involved in salt adaptation of the cyanobacterium Synechocystis sp. strain PCC 6803

Microbiology (Reading). 1996 Jul:142 ( Pt 7):1725-32. doi: 10.1099/13500872-142-7-1725.

Abstract

An active-transport system for the osmoprotective compound glucosylglycerol (GG) was found in the cyanobacterium Synechocystis sp. strain PCC 6803. Uptake assays with 14C-labelled GG showed that the GG transport was enhanced in cells adapted to increasing concentrations of NaCl. Kinetic studies indicated a Michaelis-Menten relationship. The uptake of GG was energy dependent and occurred against a steep concentration gradient. It was inhibited by uncouplers as well as by a combination of darkness and KCN. The affinity of the transporter seems to be restricted to osmoprotective compounds of cyanobacteria; from a variety of compounds tested only sucrose and trehalose competed with GG for uptake. A salt-sensitive mutant of Synechocystis 6803 unable to synthesize GG could be complemented to salt resistance by exogenous GG. Accumulation of GG from the medium was essential for the restoration of photosynthesis and growth in mutant cells under high-salt conditions. In wild-type cells, the GG transporter probably serves to prevent GG leaking out of salt-stressed cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological
  • Antimetabolites / pharmacology
  • Biological Transport, Active / drug effects
  • Cyanobacteria / drug effects
  • Cyanobacteria / genetics
  • Cyanobacteria / metabolism*
  • Genetic Complementation Test
  • Glucosides / pharmacokinetics*
  • Kinetics
  • Mutation
  • Sodium Chloride / pharmacology

Substances

  • Antimetabolites
  • Glucosides
  • glucosylglycerol
  • Sodium Chloride