Selective distribution of the NMDA-R1 glutamate receptor in astrocytes and presynaptic axon terminals in the nucleus locus coeruleus of the rat brain: an immunoelectron microscopic study

J Comp Neurol. 1996 Jun 10;369(4):483-96. doi: 10.1002/(SICI)1096-9861(19960610)369:4<483::AID-CNE1>3.0.CO;2-0.

Abstract

The regional and cellular distribution of the different classes of excitatory amino acid receptors with respect to the noradrenergic neurons of the nucleus locus coeruleus (LC) are unknown. We therefore combined immunoperoxidase labeling for the R1 subunit of the N-methy-D-aspartate (NMDA) receptor with immunogold-silver localization of the catecholamine synthesizing enzyme, tyrosine hydroxylase (TH), in single sections through the rat LC to determine the subcellular localization of this glutamate receptor subtype with respect to the noradrenergic neurons. At the light microscopic level, there was light to moderate labeling for the NMDA-R1-like (li) receptor in the caudal pole of the LC and dense labeling in the dorsolateral aspect of the LC adjacent to the superior cerebellar peduncle. In the rostral pole of the LC which is enriched with noradrenergic dendrites, significant overlap between both immunoreactivities could be observed. At the ultrastructural level, immunoperoxidase labeling for NMDA-R1 was selectively distributed in astrocytic processes and within presynaptic axon terminals but was rarely seen in catecholamine-containing somata or dendrites. Peroxidase labeling for NMDA-R1, however, was occasionally observed in dendrites in the rostral pole of the LC. Most of these dendrites lacked detectable levels of TH, although TH immunoreactivity was apparent in the neuropil. Dendrites containing NMDA-R1-li immunoreactivity often received asymmetric (excitatory-type) contacts from unlabeled terminals. NMDA-R1-li-immunoreactive axon terminals usually contained small clear, as well as large dense-core vesicles and were often apposed to unlabeled dendrites, axon terminals and/or glial processes. These results provide the first ultrastructural evidence that NMDA-R1-li immunoreactivity is selectively distributed within astrocytic processes and presynaptic axon terminals within the LC.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Astrocytes / metabolism*
  • Astrocytes / ultrastructure
  • Immunoenzyme Techniques
  • Locus Coeruleus / metabolism*
  • Locus Coeruleus / ultrastructure
  • Male
  • Microscopy, Immunoelectron
  • Neuronal Plasticity / physiology
  • Norepinephrine / metabolism
  • Presynaptic Terminals / metabolism*
  • Presynaptic Terminals / ultrastructure
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, N-Methyl-D-Aspartate / metabolism*
  • Subcellular Fractions / enzymology
  • Synaptic Transmission / physiology
  • Tyrosine 3-Monooxygenase / metabolism

Substances

  • Receptors, N-Methyl-D-Aspartate
  • Tyrosine 3-Monooxygenase
  • Norepinephrine