Shapes of bilayer vesicles with membrane embedded molecules
- PMID: 8766690
- DOI: 10.1007/BF00180372
Shapes of bilayer vesicles with membrane embedded molecules
Abstract
The interdependence of the lateral distribution of molecules which are embedded in a membrane (such as integral membrane proteins) and the shape of a cell with no internal structure (such as phospholipid vesicles or mammalian erythrocytes) has been studied. The coupling of the lateral distribution of the molecules and the cell shape is introduced by considering that the energy of the membrane embedded molecule at a given site of the membrane depends on the curvature of the membrane at that site. Direct interactions between embedded molecules are not considered. A simple expression for the interaction of the membrane embedded molecule with the local membrane curvature is proposed. Starting from this interaction, the consistently related expressions for the free energy and for the distribution function of the embedded molecules are derived. The equilibrium cell shape and the corresponding lateral distribution of the membrane embedded molecules are determined by minimization of the membrane free energy which includes the free energy of the membrane embedded molecules and the membrane elastic energy. The resulting inhomogeneous distribution of the membrane embedded molecules affects the cell shape in a nontrivial manner. In particular, it is shown that the shape corresponding to the absolute energy minimum at given cell volume and membrane area may be elliptically non-axisymmetric, in contrast to the case of a laterally homogeneous membrane where it is axisymmetric.
Similar articles
-
Coupling between vesicle shape and lateral distribution of mobile membrane inclusions.Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041915. doi: 10.1103/PhysRevE.73.041915. Epub 2006 Apr 13. Phys Rev E Stat Nonlin Soft Matter Phys. 2006. PMID: 16711844
-
Vesicle shape, molecular tilt, and the suppression of necks.Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031908. doi: 10.1103/PhysRevE.76.031908. Epub 2007 Sep 11. Phys Rev E Stat Nonlin Soft Matter Phys. 2007. PMID: 17930272
-
Equilibrium shape degeneracy in starfish vesicles.Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 1):021914. doi: 10.1103/PhysRevE.76.021914. Epub 2007 Aug 10. Phys Rev E Stat Nonlin Soft Matter Phys. 2007. PMID: 17930072
-
Coupling of bending and stretching deformations in vesicle membranes.Adv Colloid Interface Sci. 2014 Jun;208:14-24. doi: 10.1016/j.cis.2014.02.008. Epub 2014 Feb 18. Adv Colloid Interface Sci. 2014. PMID: 24630342 Review.
-
Lateral inhomogeneous lipid membranes: theoretical aspects.Adv Colloid Interface Sci. 1995 May 30;57:229-85. doi: 10.1016/0001-8686(95)00243-j. Adv Colloid Interface Sci. 1995. PMID: 7619335 Review.
Cited by
-
Molecular Shape Solution for Mesoscopic Remodeling of Cellular Membranes.Annu Rev Biophys. 2022 May 9;51:473-497. doi: 10.1146/annurev-biophys-011422-100054. Epub 2022 Mar 3. Annu Rev Biophys. 2022. PMID: 35239417 Free PMC article. Review.
-
Mechanical and Electrical Interaction of Biological Membranes with Nanoparticles and Nanostructured Surfaces.Membranes (Basel). 2021 Jul 14;11(7):533. doi: 10.3390/membranes11070533. Membranes (Basel). 2021. PMID: 34357183 Free PMC article. Review.
-
Modeling Membrane Curvature Generation due to Membrane⁻Protein Interactions.Biomolecules. 2018 Oct 23;8(4):120. doi: 10.3390/biom8040120. Biomolecules. 2018. PMID: 30360496 Free PMC article. Review.
-
Amphiphile-induced tubular budding of the bilayer membrane.Eur Biophys J. 2005 Nov;34(8):1066-70. doi: 10.1007/s00249-005-0481-0. Epub 2005 Jul 5. Eur Biophys J. 2005. PMID: 15997398
-
Curvature-driven lipid sorting in biomembranes.Cold Spring Harb Perspect Biol. 2011 Feb 1;3(2):a004648. doi: 10.1101/cshperspect.a004648. Cold Spring Harb Perspect Biol. 2011. PMID: 21421916 Free PMC article. Review.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
