Plasma methionine and cysteine kinetics in response to an intravenous glutathione infusion in adult humans

Am J Physiol. 1996 Feb;270(2 Pt 1):E209-14. doi: 10.1152/ajpendo.1996.270.2.E209.

Abstract

Glutathione (GSH), a tripeptide (gamma-glutamyl-cysteinyl-glycine), is thought to be both a storage and a transport form of cysteine (Cys). In a previous study (T. Hiramatsu, N.K. Fukagawa, J.S. Marchini, J. Cortiella, Y.-M. Yu, T.E. Chapman, and V.R. Young. Am. J. Clin. Nutr. 60: 525-533, 1994), the direct tracer-derived estimate of Cys flux was considerably higher than that predicted from estimates of protein turnover. To further examine the components of plasma Cys flux, seven normal-weight healthy adult men and women (26 +/- 2 yr) received stable isotope tracer infusions of L-[methyl-2H3;1-13C]methionine, L-[3,3-2H2]cysteine, and L-[methyl-2H3]leucine for 460 min. After a 3-h baseline period, GSH was administered at approximately 32 mumol.kg-1.h-1 until the end of the study. Expired breath and blood samples were obtained at timed intervals and analyzed for isotope enrichment using mass spectrometry. Leucine, alpha-ketoisocaproate, and methionine (carboxyl carbon, methyl moiety, remethylation, and transsulfuration) turnover were reduced during GSH administration (P < 0.01). In the final hour of GSH administration, Cys flux increased by 61% from 55.1 +/- 1.7 to 88.7 +/- 5.2 mumol.kg-1.h-1 (P < 0.01), which was essentially equivalent to the rate of exogenous GSH infusion. These data suggest that GSH breakdown accounts for approximately 50% of tracer-derived Cys flux basally and for all of the increase in measured Cys turnover during exogenous GSH infusion.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Cysteine / blood*
  • Female
  • Glutathione / pharmacology*
  • Humans
  • Injections, Intravenous
  • Kinetics
  • Leucine / blood
  • Male
  • Methionine / blood*

Substances

  • Methionine
  • Glutathione
  • Leucine
  • Cysteine