Transient elevations of intracellular Ca2+ levels play critical roles in neuronal development, but such elevations have not been demonstrated in migrating neurons. Here, we show that the amplitude and frequency components of Ca2+ fluctuations are correlated positively with the rate of granule cell movement in cerebellar microexplant cultures. Moreover, depression of the amplitude and frequency components of Ca2+ fluctuations by blockade of Ca2+ influx across the plasma membrane results in a reversible retardation of cell movement. These results indicate that the combination of amplitude and frequency components of intracellular Ca2+ fluctuations may provide an intracellular signal controlling the rate of neuronal cell migration.