Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct 4;271(40):24321-4.
doi: 10.1074/jbc.271.40.24321.

A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel

Affiliations
Free article

A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel

S Isomoto et al. J Biol Chem. .
Free article

Abstract

We have isolated a cDNA encoding a novel isoform of the sulfonylurea receptor from a mouse heart cDNA library. Coexpression of this isoform and BIR (Kir6.2) in a mammalian cell line elicited ATP-sensitive K+ (KATP) channel currents. The channel was effectively activated by both diazoxide and pinacidil, which is the feature of smooth muscle KATP channels. Sequence analysis indicated that this clone is a variant of cardiac type sulfonylurea receptor (SUR2). The 42 amino acid residues located in the carboxyl-terminal end of this novel sulfonylurea receptor is, however, divergent from that of SUR2 but highly homologous to that of the pancreatic one (SUR1). Therefore, this short part of the carboxyl terminus may be important for diazoxide activation of KATP channels. The reverse transcription-polymerase chain reaction analysis showed that mRNA of this clone was ubiquitously expressed in diverse tissues, including brain, heart, liver, urinary bladder, and skeletal muscle. These results suggest that this novel isoform of sulfonylurea receptor is a subunit reconstituting the smooth muscle KATP channel.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Associated data