Neuropharmacology of timing and time perception

Brain Res Cogn Brain Res. 1996 Jun;3(3-4):227-42. doi: 10.1016/0926-6410(96)00009-2.

Abstract

Time is a guiding force in the behavior of all organisms. For both a rat in an experimental setting (e.g. Skinner box) trying to predict when reinforcement will be delivered and a human in a restaurant waiting for his dinner to be served an accurate perception of time is an important determinant of behavior. Recent research has used a combination of pharmacological and behavioral manipulations to gain a fuller understanding of how temporal information is processed. A psychological model of duration discrimination that differentiates the speed of an internal clock used for the registration of current sensory input from the speed of the memory-storage process used for the representation of the durations of prior stimulus events has proven useful in integrating these findings. Current pharmacological research suggests that different stages of temporal processing may involve separate brain regions and be modified by different neurotransmitter systems. For example, the internal clock used to time durations in the seconds-to-minutes range appears linked to dopamine (DA) function in the basal ganglia, while temporal memory and attentional mechanisms appear linked to acetylcholine (ACh) function in the frontal cortex. These two systems are connected by frontal-striatal loops, thus allowing for the completion of the timing sequences involved in duration discrimination.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Basal Ganglia / physiology*
  • Humans
  • Memory / physiology*
  • Neural Pathways / physiology*
  • Perception / physiology*
  • Rats
  • Time Factors