When compared to young Fisher 344 rats, aged Fisher 344 rats were impaired in their acquisition of the water maze task as indicated by longer escape latencies and distances to find a hidden platform. In a free swim trial which was performed after the training period, young rats had a better spatial bias, since they spent more time swimming in the previous training quadrant. Tacrine 3 mg/kg, an anticholinesterase, and selegiline 0.25 mg/kg, a MAO-B inhibitor, partially reversed the acquisition deficit in aged rats when administered on their own, and drug-treated aged rats swam more in the previous training quadrant than vehicle-treated aged rats during the free swim trial. Aged rats also swam slower than young rats. Tacrine, but not selegiline, increased swimming speed in aged rats. Taken as a whole, these data support the proposal that tacrine may be effective at alleviating age-related learning impairment and confirm the role of cholinergic dysfunction in the spatial learning deficit in aged rats.