Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase

Biochem Pharmacol. 1996 Oct 11;52(7):1103-11. doi: 10.1016/0006-2952(96)00457-1.

Abstract

We have investigated the conversion of the novel anti-topoisomerase I agent CPT-11 (irinotecan; 7-ethyl-10[4-(1-piperidino)-1-piperidno]carbonyloxycamptothecin ) to its active metabolite, SN-38 (7-ethyl-10-hydroxycamptothecin), by human liver carboxylesterase (HLC). Production of SN-38 was relatively inefficient and was enzyme deacylation rate-limited with a steady-state phase occurring after 15-20 min of incubation. This later phase followed Michaelis-Menten kinetics with an apparent Km of 52.9 +/- 5.9 microM and a specific activity of 200 +/- 10 mumol/sec/mol. However, the total enzyme concentration estimated from the intercept concentrations of SN-38 was much lower than that estimated directly from the titration of active sites with paraoxon (0.65 vs. 2.0 microM, respectively). Because deacylation rate-limiting kinetics result in the accumulation of inactive acyl-enzyme complex, we postulated that incubation of CPT-11 with HLC would result in an inhibition of the HLC-catalysed hydrolysis of p-nitrophenylacetate (p-NPA), an excellent substrate for this enzyme. Indeed, this was found to be the case although complete inhibition could not be attained. Analysis of possible kinetic schemes revealed that the most likely explanation for the disparity in estimated enzyme concentrations and the incomplete inhibition of p-NPA hydrolysis is that CPT-11 also interacts at a modulator site on the enzyme, which profoundly reduces substrate hydrolysis. Furthermore, loperamide, a drug often used for the treatment of CPT-11-associated diarrhea, was found to inhibit both CPT-11 and p-NPA HLC-catalysed hydrolysis, most likely by a similar interaction. These observations have direct implications for the clinical use of CPT-11.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents, Phytogenic / metabolism*
  • Camptothecin / analogs & derivatives*
  • Camptothecin / metabolism
  • Carboxylic Ester Hydrolases / pharmacology*
  • Dose-Response Relationship, Drug
  • Enzyme Inhibitors / metabolism*
  • Humans
  • Irinotecan
  • Kinetics
  • Liver / metabolism*

Substances

  • Antineoplastic Agents, Phytogenic
  • Enzyme Inhibitors
  • Irinotecan
  • Carboxylic Ester Hydrolases
  • Camptothecin