S Cycling: Characterization of Natural Communities of Sulfate-Reducing Bacteria by 16S rRNA Sequence Comparisons

Microb Ecol. 1996 Nov;32(3):283-92. doi: 10.1007/BF00183063.


Past studies of microbial communities responsible for geochemical transformations have been limited by an inability to representatively cultivate, and then identify, the constituent members. Ribosomal RNA sequences, particularly 16S-like rRNAs, provide a measure of phylogenetic relationship that can now be used to examine the structure and diversity of microbial communities. Sulfate-reducing bacteria (SRB) play an important role in the sulfur cycle and the terminal mineralization of organic matter in estuarine and marine environments. Because the Gram-negative mesophilic SRB comprise a phylogenetically coherent assemblage, their communities are well suited to explorations through rRNA sequence-based methodologies. In this study we related molecular biological methods using rRNA probes to geochemical measurements at two different sites. At an unvegetated site in northwest Florida, rates of sulfate reduction were low and SRB rRNA comprised about 5% of the total rRNA extracted from the sediment. The other site, a salt marsh in New Hampshire, had higher rates of sulfate-reduction with SRB rRNA accounting for up to 30% of the total rRNA extracted from the sediment. SRB community structure differed dramatically between the two sites with Desulfobulbus rRNA much less abundant in the unvegetated site than in the salt marsh. The differences in these SRB communities reflect differences in the ecology of their habitats.