Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 383 (6601), 637-40

Cyclophilin-related Protein RanBP2 Acts as Chaperone for Red/Green Opsin

Affiliations

Cyclophilin-related Protein RanBP2 Acts as Chaperone for Red/Green Opsin

P A Ferreira et al. Nature.

Abstract

Cyclophilins are ubiquitous and abundant proteins that exhibit peptidyl prolyl cis-trans isomerization (PPlase) activity in vitro. Their functions in vivo, however, are not well understood. Two new retinal cyclophilin isoforms, types I and II, are highly expressed in cone photoreceptors of the vertebrate retina. Type-II cyclophilin is identical to RanBP2, a large protein that binds the GTPase Ran. Here we report that two contiguous domains in RanBP2, Ran-binding domain 4 (RBD4) and cyclophilin, act in concert as a chaperone for the opsin molecule of the red/green-sensitive visual pigment of a dichromatic vertebrate. In Drosophila, the cyclophilin NinaA is expressed in all photoreceptors and is required for the expression of only a subset of opsins. The molecular basis of these photoreceptor class-specific effects and the functions of NinaA and other cyclophilins in vivo remain unclear. Unlike NinaA, which forms a stable complex with opsin from retinular cells R1-6, we find that the cyclophilin domain of RanBP2 does not bind opsin directly; rather, it augments and stabilizes the interaction between red/green (R/G) opsin and the RBD4 domain. This involves a cyclophilin-mediated modification of R/G opsin, possibly involving proline isomerization. The RBD4-cyclophilin supradomain of RanBP2, therefore, is a form of vertebrate chaperone of defined substrate specificity, which may be involved in the processing and/or transport of long-wavelength opsin in cone photoreceptor cells.

Similar articles

See all similar articles

Cited by 70 PubMed Central articles

See all "Cited by" articles

Publication types

LinkOut - more resources

Feedback