Binding of Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH2) and related peptides to mu 1 and mu 2 opiate receptors

Neurosci Lett. 1996 Aug 30;215(1):65-9. doi: 10.1016/s0304-3940(96)12928-1.

Abstract

Two endogenous brain peptides (Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH2) and Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2)), a cyclized analog and two fragments of Tyr-W-MIF-1, and hemorphin (Tyr-Pro-Trp-Thr) were tested for binding to mu 1 and mu 2 opiate receptor. All these peptides bound to both mu 1 and mu 2 sites in assays optimized to discriminate these subtypes of the mu opiate receptor in membranes from bovine thalamus. The cyclized analog of Tyr-W-MIF-1, previously shown to have potency near that of Tyr-D-Ala-Gly-N-MePhe-Gly-ol (DAMGO) and morphine in producing analgesia after intracerebroventricular (i.c.v.) injection, bound to mu 1 and mu 2 sites with affinities similar to those of DAMGO. Tyr-W-MIF-1, previously shown to induce analgesia after i.c.v. injection but with much higher potency after intrathecal (i.t.) injection, also bound to both mu 1 and mu 2 sites with an affinity between that of morphiceptin and hemorphin. Although the highest ratios of Ki's for mu 2/mu 1 were shown by hemorphin, Tyr-W-MIF-1, and Tyr-W-MIF-1, none of the compounds were significantly different in selectivity. The results indicate that the relatively lower potency of Tyr-W-MIF-1 after i.c.v., compared with i.t. injection, is not due to a lack of binding to mu 1 sites. They suggest that it has relatively high efficacy at mu 2, but low efficacy at mu 1 sites, a possibility that might explain some of the novel properties of these peptides.

MeSH terms

  • Animals
  • Binding, Competitive*
  • Cattle
  • Dose-Response Relationship, Drug
  • MSH Release-Inhibiting Hormone / analogs & derivatives*
  • MSH Release-Inhibiting Hormone / pharmacology
  • Narcotic Antagonists / pharmacology*
  • Peptides / pharmacology*
  • Receptors, Opioid, mu / drug effects*
  • Thalamus / drug effects*

Substances

  • Narcotic Antagonists
  • Peptides
  • Receptors, Opioid, mu
  • tyrosyl-prolyl-tryptophyl-glycinamide
  • MSH Release-Inhibiting Hormone