A novel 66-kilodalton protein complexes with Rrn6, Rrn7, and TATA-binding protein to promote polymerase I transcription initiation in Saccharomyces cerevisiae
- PMID: 8887672
- PMCID: PMC231645
- DOI: 10.1128/MCB.16.11.6436
A novel 66-kilodalton protein complexes with Rrn6, Rrn7, and TATA-binding protein to promote polymerase I transcription initiation in Saccharomyces cerevisiae
Abstract
We report the cloning of RRN11, a gene coding for a 66-kDa protein essential for transcription initiation by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae. Rrn11 specifically complexes with two previously identified transcription factors, Rrn6 and Rrn7 (D. A. Keys, J. S. Steffan, J. A. Dodd, R. T. Yamamoto, Y. Nogi, and M. Nomura, Genes Dev. 8:2349-2362, 1994). The Rrn11-Rrn6-Rrn7 complex also binds the TATA-binding protein and is required for transcription by the core domain of the Pol I promoter. Therefore, we have designated the Rrn11-Rrn6-Rrn7-TATA-binding protein complex the yeast Pol I core factor. A two-hybrid assay was used to demonstrate involvement of short leucine heptad repeats on both Rrn11 and Rrn6 in the in vivo association of these two proteins. This assay also verified the previously described strong association between Rrn6 and Rrn7, independent of the Rrn6 leucine repeat.
Similar articles
-
RRN11 encodes the third subunit of the complex containing Rrn6p and Rrn7p that is essential for the initiation of rDNA transcription by yeast RNA polymerase I.J Biol Chem. 1996 Aug 30;271(35):21062-7. doi: 10.1074/jbc.271.35.21062. J Biol Chem. 1996. PMID: 8702872
-
RRN6 and RRN7 encode subunits of a multiprotein complex essential for the initiation of rDNA transcription by RNA polymerase I in Saccharomyces cerevisiae.Genes Dev. 1994 Oct 1;8(19):2349-62. doi: 10.1101/gad.8.19.2349. Genes Dev. 1994. PMID: 7958901
-
Reconstitution of yeast RNA polymerase I transcription in vitro from purified components. TATA-binding protein is not required for basal transcription.J Biol Chem. 1998 Dec 11;273(50):33795-802. doi: 10.1074/jbc.273.50.33795. J Biol Chem. 1998. PMID: 9837969
-
Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human.Nucleic Acids Res. 2001 Jul 1;29(13):2675-90. doi: 10.1093/nar/29.13.2675. Nucleic Acids Res. 2001. PMID: 11433012 Free PMC article. Review.
-
RNA polymerase III and class III transcription factors from Saccharomyces cerevisiae.Methods Enzymol. 1996;273:249-67. doi: 10.1016/s0076-6879(96)73024-0. Methods Enzymol. 1996. PMID: 8791617 Review. No abstract available.
Cited by
-
Regulation of ribosomal RNA production by RNA polymerase I: does elongation come first?Genet Res Int. 2012;2012:276948. doi: 10.1155/2012/276948. Epub 2012 Jan 12. Genet Res Int. 2012. PMID: 22567380 Free PMC article.
-
New model for the yeast RNA polymerase I transcription cycle.Mol Cell Biol. 2001 Aug;21(15):4847-55. doi: 10.1128/MCB.21.15.4847-4855.2001. Mol Cell Biol. 2001. PMID: 11438642 Free PMC article.
-
Promoter-specific dynamics of TATA-binding protein association with the human genome.Genome Res. 2019 Dec;29(12):1939-1950. doi: 10.1101/gr.254466.119. Epub 2019 Nov 15. Genome Res. 2019. PMID: 31732535 Free PMC article.
-
The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications.Subcell Biochem. 2019;93:143-192. doi: 10.1007/978-3-030-28151-9_5. Subcell Biochem. 2019. PMID: 31939151 Free PMC article. Review.
-
Structural mechanism of ATP-independent transcription initiation by RNA polymerase I.Elife. 2017 Jun 17;6:e27414. doi: 10.7554/eLife.27414. Elife. 2017. PMID: 28623663 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases