Carrier effects on biological activity of amphotericin B

Clin Microbiol Rev. 1996 Oct;9(4):512-31. doi: 10.1128/CMR.9.4.512-531.1996.

Abstract

Amphotericin B (AmB), the drug of choice for the treatment of most systemic fungal infections, is marketed under the trademark Fungizone, as an AmB-deoxycholate complex suitable for intravenous administration. The association between AmB and deoxycholate is relatively weak; therefore, dissociation occurs in the blood. The drug itself interacts with both mammalian and fungal cell membranes to damage cells, but the greater susceptibility of fungal cells to its effects forms the basis for its clinical usefulness. The ability of the drug to form stable complexes with lipids has allowed the development of new formulations of AmB based on this property. Several lipid-based formulations of the drug which are more selective in damaging fungal or parasitic cells than mammalian cells and some of which also have a better therapeutic index than Fungizone have been developed. In vitro investigations have led to the conclusion that the increase in selectivity observed is due to the selective transfer of AmB from lipid complexes to fungal cells or to the higher thermodynamic stability of lipid formulations. Association with lipids modulates AmB binding to lipoproteins in vivo, thus influencing tissue distribution and toxicity. For example, lipid complexes of AmB can be internalized by macrophages, and the macrophages then serve as a reservoir for the drug. Furthermore, stable AmB-lipid complexes are much less toxic to the host than Fungizone and can therefore be administered in higher doses. Experimentally, the efficacy of AmB-lipid formulations compared with Fungizone depends on the animal model used. Improved therapeutic indices for AmB-lipid formations have been demonstrated in clinical trials, but the definitive trials leading to the selection of an optimal formulation and therapeutic regimen have not been done.

Publication types

  • Review

MeSH terms

  • Amphotericin B / administration & dosage*
  • Amphotericin B / pharmacokinetics*
  • Amphotericin B / toxicity
  • Animals
  • Aspergillosis / drug therapy
  • Blastomycosis / drug therapy
  • Candidiasis / drug therapy
  • Cell Death
  • Cell Membrane / metabolism
  • Clinical Trials as Topic / statistics & numerical data
  • Coccidioidomycosis / drug therapy
  • Cryptococcosis / drug therapy
  • Detergents / metabolism
  • Drug Carriers / administration & dosage*
  • Drug Carriers / adverse effects
  • Drug Delivery Systems / methods
  • Drug Industry
  • Histoplasmosis / drug therapy
  • Immunity, Active
  • Leishmania / drug effects
  • Leishmaniasis, Visceral / drug therapy
  • Lipoproteins / metabolism
  • Mice
  • Molecular Structure
  • Phospholipids / metabolism
  • Rabbits

Substances

  • Detergents
  • Drug Carriers
  • Lipoproteins
  • Phospholipids
  • Amphotericin B