Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jul:(22):7-15.
doi: 10.1111/j.2042-3306.1996.tb05026.x.

Integrative model for predicting thermal balance in exercising horses

Affiliations

Integrative model for predicting thermal balance in exercising horses

H J Mostert et al. Equine Vet J Suppl. 1996 Jul.

Abstract

A theoretical integrative model was developed to determine the heat balance of horses working in a given environment. This model included the following parameters: metabolic heat gain, solar heat gain, evaporative heat loss due to sweating, respiratory tract heat loss, radiation from the body and heat gain or loss due to convection and conduction. The model developed in this study includes an unique approach for estimating heat loss via evaporation of sweat from the animal's skin surface. Previous studies modelling evaporative heat dissipation were based on the volume of sweat loss. While it is known that the ambient conditions affect evaporation rate, these effects have not been adequately described. The present model assumes the horse's skin surface is adequately represented by a body of water and it describes the interaction of that water body with the atmosphere. It is assumed that sweat has thermodynamic characteristics equivalent to distilled water. Sweat, however, has high electrolyte and protein concentrations and anecdotal evidence has shown that the thermodynamic characteristics may be significantly affected. Further research is, therefore, required to confirm these characteristics for equine sweat. The model describes all factors known to affect the thermal balance of the horse working in a given environment. The relative significance of the various variables on the whole integrative model has been illustrated. The effect of ambient temperature and humidity on the evaporative heat loss, the most significant and critical avenue of heat dissipation, is defined and quantified. The model illustrates clearly how increasing relative humidity limits evaporative heat loss, which can be further compromised when horses exercise on treadmills with no air movement.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources