Divergent regulation of vascular endothelial growth factor and of erythropoietin gene expression in vivo

Pflugers Arch. 1996 Apr;431(6):905-12. doi: 10.1007/s004240050084.

Abstract

There is accumulating evidence from in vitro experiments that the gene expression of the vascular endothelial growth factor (VEGF) is, like that of the erythropoietin (EPO) gene, regulated by the oxygen tension and by divalent cations such as cobalt. Since the information about the regulation of VEGF gene expression in vivo is rather scarce, this study aimed to examine the influence of hypoxia and of cobalt on VEGF gene expression in different rat organs and to compare it with that on EPO gene expression. To this end male Sprague-Dawley rats were exposed to carbon monoxide (0.1% CO), hypoxia (8% O2 ) or to cobalt chloride (12 and 60 mg/kg s.c.) for 6 h. mRNA levels for VEGF- 188, -164, and -120 amino acid isoforms in lungs, hearts, kidneys and livers were semiquantitated by RNase protection. For these organs we found a rank order of VEGF mRNA abundance of lung >> heart > kidney = liver. EPO mRNA levels were semiquantitated in kidneys and livers. Hypoxia, CO and cobalt increased EPO mRNA levels 60-fold, 140-fold and 5-fold, respectively, in the kidneys, and 11-fold, 11-fold and 3-fold, respectively, in the livers. None of these manoeuvres caused significant changes of VEGF mRNA in lung, heart or kidneys. Only in the livers did hypoxia lead to a significant (50%) increase of VEGF mRNA. These findings suggest that, in contrast to the in vitro situation, the expression of the VEGF gene in normal rat tissues is rather insensitive to hypoxia. In consequence, the in vivo regulation of the VEGF and the EPO genes appear to differ substantially, suggesting that the regulation of the VEGF and EPO genes may not follow the same essential mechanisms in vivo.

MeSH terms

  • Animals
  • Base Sequence
  • Carbon Monoxide / toxicity
  • Cobalt / pharmacology
  • Endothelial Growth Factors / genetics*
  • Erythropoietin / genetics*
  • Gene Expression Regulation* / drug effects
  • Hypoxia / genetics
  • In Vitro Techniques
  • Lymphokines / genetics*
  • Male
  • Organ Specificity
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors

Substances

  • Endothelial Growth Factors
  • Lymphokines
  • RNA, Messenger
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors
  • Erythropoietin
  • Cobalt
  • Carbon Monoxide