Identification of a putative mechanosensory neuron in Lymnaea: characterization of its synaptic and functional connections with the whole-body withdrawal interneuron

J Neurophysiol. 1996 Nov;76(5):3230-8. doi: 10.1152/jn.1996.76.5.3230.

Abstract

1. In this study, we identified a putative mechanosensory neuron in the freshwater pond snail Lymnaea stagnalis. This sensory neuron, termed right parietal dorsal 3 (RPD3), mediates part of the whole-body withdrawal behavior via the activation of a withdrawal interneuron. 2. RPD3 is located in the central ring ganglia, where its soma is situated on the dorsal surface of the right parietal ganglion. Intracellular injection of the dye Lucifer yellow revealed that RPD3 has both central and peripheral axonal projections. 3. In isolated-CNS preparations, RPD3 was quiescent. In semi-intact preparations, however, a gentle/moderate mechanical touch (by a pair of blunt forceps) to the mantle cavity or columellar musculature elicited action potentials in RPD3 in the absence of prepotential activity. Furthermore, mechanical stimulus-induced action potentials in RPD3 persisted in the presence of zero Ca2+/ high Mg2+ and high Ca2+/high Mg2+ salines. Together, these data suggest that RPD3 is most likely to be a primary sensory neuron. 4. In both isolated-CNS and semi-intact preparations, intracellular depolarization of RPD3 excited the whole-body withdrawal interneuron right pedal dorsal 11 (RPeD11). This synaptic connection persisted in the presence of high Ca2+ and high Mg2+ saline, suggesting that it is likely to be monosynaptic. Moreover, when stimulated electrically, the interneuron RPeD11 induced an hyperpolarizing response in RPD3. The possibility of this connection being monosynaptic was not tested, however, in the present study. Together, these data demonstrate that RPD3 excites RPeD11, which in turn may inhibit RPD3 activity. 5. In the semi-intact preparation, a mechanical touch to the mantle edge excited RPD3, which in turn generated action potentials in RPeD11. Zero Ca2+ saline blocked this synaptic connection between RPD3 and RPeD11, suggesting that it is chemical. 6. To demonstrate that RPD3 was sufficient to induce the withdrawal response and that the withdrawal behavior was mediated indirectly via RPeD11, we made simultaneous intracellular recordings from these two neurons while monitoring muscle contractions via a tension transducer. Intracellular depolarization of RPD3 elicited action potentials in RPeD11, followed by the contraction of the columellar muscle. Similar stimulation of RPD3 failed to excite a simultaneously hyperpolarized RPeD11 and as a result, no contraction of the columellar muscle occurred. Direct intracellular depolarization of RPeD11, however, induced the contraction of the columellar muscle. These data suggest that RPD3-induced withdrawal behavior is mediated in part via RPeD11.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Interneurons / physiology*
  • Lymnaea
  • Mechanoreceptors / physiology*
  • Motor Activity / physiology
  • Neurons, Afferent / physiology*
  • Parietal Lobe / physiology*
  • Synaptic Transmission / physiology*