1. The role of the glutamate receptor subunit delta 2 in the induction of cerebellar long-term depression (LTD) was investigated by application of antisense oligonucleotides. The delta 2 subunit is selectively localized to Purkinje cells (PCs), with the highest levels being in the PC dendritic spines, where parallel fibers are received and where cerebellar LTD is expressed. 2. Immunocytochemical analysis of calbindin-positive PCs revealed that both the dendritic and somatic expression of delta 2 was reduced in antisense-but not in sense-treated cultures. An antisense oligonucleotide directed against the related subunit delta 1 did not affect the expression of delta 2 in PCs. 3. Cerebellar LTD may be reliably induced in a preparation of cultured embryonic cerebellar neurons from the mouse when parallel and climbing fiber stimulation are replaced by brief glutamate pulses and strong, direct depolarization of the PC, respectively. Application of an antisense oligonucleotide directed against delta 2 completely blocked the induction of LTD produced by glutamate/ depolarization conjunctive stimulation. A delta 2 sense oligonucleotide or an antisense oligonucleotide directed against the related delta 1 subunit had no effect. 4. The effect of the delta 2 antisense oligonucleotide was not related to attenuation of calcium influx via voltage-gated channels or calcium mobilization via metabotropic glutamate receptors, as assessed with fura-2 microfluorimetry. Current flow through alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-receptor-associated ion channels also appeared unaltered. All three of these processes have previously been shown to be required for cerebellar LTD induction. The observation that delta 2 is involved in a metabotropic-glutamate-receptor-independent signaling pathway that is required for LTD induction supports the view that delta 2 participates in the formation of a novel postsynaptic receptor complex.