TNF-alpha-induced regulation and signalling in macrophages

Immunobiology. 1996 Oct;195(4-5):477-90. doi: 10.1016/s0171-2985(96)80017-9.

Abstract

Tumor necrosis factor alpha (TNF-alpha) is a pleiotropic cytokine produced predominantly by macrophages. In addition, macrophages respond to TNF-alpha by differentiating to express different groups of gene products. Our laboratory recently showed that the context in which TNF-alpha is recognized by macrophages dramatically impacts the pattern of gene expression and hence investigating the mechanism of TNF-alpha signal transduction will be important in understanding how this molecule regulates macrophage differentiation. TNF-alpha is recognized by two cell surface receptors, CD120a (p55) and CD120b (p75) that belong to the TNF/NGF receptor family. Signalling is initiated by receptor multimerization in the plane of the plasma membrane. The initial signalling events activated by receptor cross-linking are unknown although activation of the mitogen-activated protein kinase (MAPK) cascade occurs shortly after ligand binding to CD120a (p55). We have investigated the upstream kinases that mediate the activation of p42mapk/erk2 following cross-linking of CD120a (p55) in mouse macrophages. Exposure of mouse macrophages to TNF-alpha stimulated a time-dependent increase in the activity of MEK1, that temporally preceded peak activation of p42mapk/erk2. MEKs, dual specificity T/Y kinases, act as a convergence point for several signalling pathways including Ras/Raf, MEKK and Mos. Incubation of macrophages with TNF-alpha was found to transiently stimulate an MEKK that peaked in activity within 30 sec of exposure and progressively declined towards basal levels by 5 min. By contrast, under these conditions, activation of either c-Raf-1 or Raf-B was not detected. These data suggest that the activation of the MAPK cascade in response to TNF-alpha is mediated by the sequential activation of an MEKK and MEK1 in a c-Raf-1 and Raf-B-independent fashion. The implications of these findings will be discussed in the context of the regulation of macrophage gene expression.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Humans
  • Macrophages / drug effects
  • Macrophages / immunology*
  • Macrophages / metabolism*
  • Signal Transduction / drug effects
  • Signal Transduction / immunology*
  • Tumor Necrosis Factor-alpha / physiology*

Substances

  • Tumor Necrosis Factor-alpha