Characterization of lactobacilli by Southern-type hybridization with a Lactobacillus plantarum pyrDFE probe

Int J Syst Bacteriol. 1996 Apr;46(2):588-94. doi: 10.1099/00207713-46-2-588.


Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum (M.-C. Curk, J.-C. Hubert, and F. Bringel, Int. J. Syst. Bacteriol. 46:595-598, 1996) can hardly be distinguished on the basis of their phenotypes. Unlike L. plantarum and L. paraplantarum, L. pentosus ferments glycerol and xylose but not melezitose. We identified two L. pentosus strains (CNRZ 1538 and CNRZ 1544) which ferment glycerol and melezitose but not xylose. alpha-Methyl-D-mannoside was fermented by 66% of the L. plantarum strains tested but not by L. paraplantarum strains. In this paper we describe a simple method to identify L. plantarum, L. pentosus, and L. paraplantarum. This method is based on nonradioactive Southern-type hybridization between BglI DNA digests of the lactobacilli tested and a DNA probe (L. plantarum pyrDFE genes from strain CCM 1904). A total of 68 lactobacilli were classified into five groups on the basis of the bands detected. Two groups contained L. plantarum strains; one of these groups contained 31 strains, including the type strain, and was characterized by bands at 7, 4, and 1 kb, and the other group contained strain LP 85-2 and was characterized by bands at 5 and 1.1 kb. Only one band (a band at around 7 kb) was detected in the strains belonging to the L. pentosus group, and two bands (at 4 and 1 kb) were found in the strains belonging to the L. paraplantarum group. No hybridization was detected in the last group, which contained Lactobacillus casei, Lactobacillus coryniformis, Lactobacillus paracasei, Lactobacillus brevis, Lactobacillus delbrueckii, and Lactobacillus leichmannii strains.

MeSH terms

  • Base Sequence
  • Blotting, Southern
  • DNA Probes
  • DNA, Bacterial / analysis
  • Lactobacillus / classification
  • Lactobacillus / genetics*
  • Molecular Sequence Data
  • Nucleic Acid Hybridization
  • Phenotype


  • DNA Probes
  • DNA, Bacterial