The ATP-dependent transport of beta-estradiol 17-(beta-D-glucuronide) (E217G), a cholestatic metabolite of estradiol, was investigated in rat liver canalicular membrane vesicles. ATP-dependent transport was dependent on time and temperature and occurred into an osmotically sensitive space; kinetic analysis indicated a saturable transport system (Michaelis-Menten constant value, 75 microM; maximum transport rate, 598 pmol.min-1.mg protein-1). The steroid conjugates estradiol glucuronide, estriol 3-glucuronide, estriol 16 alpha-glucuronide, testosterone glucuronide, and the three-sulfate conjugate of 17G were effective inhibitors of transport. Bromosulfophthalein, S-(2,4-dinitrophenyl)glutathione, and glutathione disulfide, all substrates of the canalicular ATP-dependent non-bile acid organic anion transport system, were also effective inhibitors, whereas taurocholate had no effect on transport. Conversely, E217G inhibited the ATP-dependent transport of S-(2,4-dinitrophenyl)glutathione. Daunorubicin, vinblastine, etoposide, cyclosporin, and PSC-833, substrates/modulators of P-glycoprotein, were also potent inhibitors of E217G transport, and E217G competitively inhibited the ATP-dependent transport of daunorubicin. C219, a monoclonal antibody against P-glycoprotein, inhibited ATP-dependent transport of E217G and daunorubicin but not of taurocholate or S-(2,4-dinitrophenyl)glutathione. These data indicate that E217G is substrate of both the non-bile acid organic anion transport system and P-glycoprotein but not of the ATP-dependent bile acid transport system in canalicular membranes.