Adaptive Responses to Muscle Lengthening and Shortening in Humans

J Appl Physiol (1985). 1996 Mar;80(3):765-72. doi: 10.1152/jappl.1996.80.3.765.

Abstract

We tested the hypothesis that exercise training with maximal eccentric (lengthening) muscle actions results in greater gains in muscle strength and size than training with concentric (shortening) actions. Changes in muscle strength, muscle fiber size, and surface electromyographic (EMG) activity of the quadriceps muscle were compared after 36 sessions of isokinetic concentric (n = 8) or eccentric (n = 7) exercise training over 12 wk with use of a one-leg model. Eccentric training increased eccentric strength 3.5 times more (pre/post 46%, P < 0.05) than concentric training increased concentric strength (pre/post 13%). Eccentric training increased concentric strength and concentric training increased eccentric strength by about the same magnitude (5 and 10%, respectively, P > 0.05). Eccentric training increased EMG activity seven times more during eccentric testing (pre/post 86%, P < 0.05) than concentric training increased EMG activity during concentric testing (pre/post 12%). Eccentric training increased the EMG activity measured during concentric tests and concentric training increased the EMG activity measured during eccentric tests by about the same magnitude (8 and 11%, respectively, P > 0.05). Type I muscle fiber percentages did not change significantly, but type IIa fibers increased and type IIb fibers decreased significantly (P < 0.05) in both training groups. Type I fiber areas did not change significantly (P > 0.05), but type II fiber area increased approximately 10 times more (P < 0.05) in the eccentric than in the concentric group. It is concluded that adaptations to training with maximal eccentric contractions are specific to eccentric muscle actions that are associated with greater neural adaptation and muscle hypertrophy than concentric exercise.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Electromyography
  • Exercise / physiology*
  • Humans
  • Knee / physiology*
  • Male
  • Muscle Fatigue / physiology*
  • Muscle Fibers, Skeletal / physiology*
  • Time Factors